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ABSTRACT-This paper presents a spatial‐temporal 
prediction of crime that allows forecasting of the criminal 
activity behaviour in a particular district by using 
structured crime classification algorithm. The quantity of 
each crime is understood as the forecasted enhance or 
reduce the particular moment in time and location of the 
criminal activity. The proposed algorithm used for 
forecasting crime is based on one year crime reports. It is 
proposed a new structured crime classification algorithm 
which improves the prediction performance on the studied 
dataset of criminal activity. It execute the following analyses: 
To find the exact hotspot location and disposition analysis, 
which shows that it is possible to predict crime location 
promptly, in a specific space and time, and highest 
percentage of effectiveness in the prediction of the position 
of crime. The usage of the said algorithm is to identify the 
particular crime from number of crimes. 
 
Key Words crime hot spots, repeat victimisation, Crime 
Pattern Theory, Statistical Methods. 
 

1. INTRODUCTION 
Public security and crime forecasting activities are some 
of the most important concerns of both citizens and 
government. Large amounts of money, human resources, 
equipment and services are devoted to these activities. In 
addition, there is a constant concern to justify resources 
allocated for police. If the police could anticipate, with an 
acceptable degree of precision, when and where criminal 
activities of a specific kind are going to take place, it 
would achieve a double benefit. First, it would be possible 
to concentrate the necessary logistic activities and 
resources fighting that specific kind of criminal activity in 
the geographic area and forecasted time frame, and the 
comparison between the amount of resources allocated to 
police forces and the results achieved by them may result 
in a more adequate basis for planning and distribution of 
public security. 
There are several works dedicated to the study of spatial 
and temporal verdicts made by criminals, i.e., identifying 
hotspots where criminal activity is concentrated [1, 2 ]. A 
commonly used method is the Spatial and Temporal 

Analysis of the Crime Program [4], which clusters crime 
points within ellipses [3].Surveys additional hotspot 
methods, the most complicated of which employs the 
kernel density estimation method [19]. Nevertheless, the 
main disadvantage of statistical methods is that they do 
not present additional semantic data for describing the 
incident under study. In the specific case of crime 
prediction, this kind of information is highly desirable, as 
it is needed to support decision making processes and, in 
general, to prepare preventive and corrective policies. 
Because of this, we have selected inductive classification 
methods over statistical ones in order to generate an 
inductive description of each type of criminal activity 
studied. These descriptions by themselves constitute 
valuable information that provides a general overview of 
the criminal activity scenario. Further, by using these 
inductive definitions, it is possible to identify the 
expected enhance or reduce in specific criminal activities 
that will most likely occur in specific areas and times. 
This paper reports, experimental results produced by the 
proposed algorithm of crime activity forecasting within a 
specific time period and location using structured crime 
classification algorithm. In Section 2, it has been 
presented the details of forecasting exact hotspot 
identification using Clique optimized clustering algorithm 
from the 200*200 size grid. The particular 
implementations give 86% accuracy. Then in Section 3, it 
is shown that the structured crime classification algorithm 
design and produce accuracy output of our experiments. It 
had been performed two analyses: Hotspot identification, 
and structured crime classification algorithm analysis. For 
the first analysis, the data used has been from the Chennai 
city promoter apartment’s data. Within this analysis we 
perform experiments for spatial and temporal location of 
crime and expected burglary crime. For the structured 
crime classification algorithm analysis, data from the 
Chennai city one year police data had been used. Finally, 
in Section 4, it has been described our conclusions and 
discuss future work. 
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Fig1: Proposed simulation Model 

 
2. PROPOSED SIMULATION 

The Proposed simulation description here is part of a 
police information system designed to prevent and react 
to crime. The function first step of the Crime records it 
was collected the number of past year recorded crimes. 
The second step contains structured crime classification 
algorithm it was found the particular crime using 
classification conditions. The input for the third step is the 
output of structured crime classification algorithm the 
predicted specific crime made the instance of the KDE 
grid, after the instances Clique optimized clustering 
algorithm performs the separations of the clusters. The 
created suggestions are classified into four types: (1) 
suggestions on police   patrol to avoid the random (2) 
suggestions to begin specific defensive movements 
through the crowd media, (3) suggestions to make the 
new police station in high sensitive area, and (4) general 
suggestions on the state of the police resource allocations.  
The problem of crime prediction requires several different 
information sources. All of them directly related with 
public security, but not easily accessible. In this research 
have chosen three categories crime information on (1) 
crimes Place, (2) Crime Time, (3) Particular crime 
(Burglary crime)(4) Density of Population , (5) Number 
of Promoter Apartments. 
2.1 Clique Optimize Algorithm 
Clustering is one of the most useful tasks in data mining 
process which can separate objects of a data set into 
distinct clusters such that two objects from one cluster are 
similar to each other, whereas two objects from distinct 
clusters are not. Spatial clustering means to identify 
clusters or densely populated areas in a large spatial data 
set, give out as an important task of spatial data mining.  
 The research of spatial clustering is very active. The 
main satisfactory methods of this area include: algorithm 
based on spatial dataset separation such as k-means, k-
medoid, CLARA, etc. algorithm based on hierarchical 
clustering such as CURE, BIRCH, etc. algorithm based 
on density such as DBSCAN, and DENCLUE , etc. 
algorithm based on grid such as SING, wave-cluster and 
CLIQUE, etc. To estimate the capability of spatial 
clustering algorithm, some principle is shown as follows: 

scalability and the ability of discovering cluster of any 
shape. With these criterions of spatial clustering, 
proposed CLIQUE Optimization algorithm for finding the 
subspace clustering of spatial dataset automatically, non-
awareness of the order of data input, the ability of finding 
any shape clusters and the linear scalability with the 
addition of dataset.  
In this paper, the CLIQUE Optimization algorithm 
follows the major steps.  
Step 1: divide the space with X, Y axis depending on 
distributing of input spatial data to avoid demolishing of 
accepted clusters. 
Step 2: Apply of pruning concept to find Density area and 
sparse area. 
Step 3: To find the Threshold Parameter (P); 
Tminimum number of data point’s density area. 
 
Algorithm 
       Input: Crime Spatial dataset D, T,    
           Points of X, Y 
      Output: Cluster area for the given D 
Step1: To find the particular crime data in the given input 
crime dataset. 
Step2: To find the X, Y axis in the given region and find 
the scale points of the crime cluster area. 

 
Fig2: Given spatial data space 

 

 
Fig3: Finding X, Y axis 
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Fig4: Scale points of crime cluster 

 
Step3: Apply Optimization and find the max out cluster 
in the data space. 
The CLIQUE optimization algorithm finds the max out 
clusters with the “Hill climbing” method and it trays to 
look for the pair of points between two max out clusters 
and the cluster which can satisfy the statistically 
important. 
 

 
Fig5: Points of the max out clusters 

 
Step4: To identify the Dense Area clusters and Sparse 
Area using Threshold parameter (T) 
In this step, count the number of data points in every area 
N, recording the value NUMi, calculating the density of 
Area with the x, y coordinate value and T   NUMi It is 
Density of Cluster otherwise It is Sparse area. 

 
Fig6: Identify dens clusters and sparse areas based T 

 
3. RESULTS AND FINDINGS 

Figure.7 is the initial spatial dataset D shows the 
clustering results of CLIQUE Optimization setting 
Findings = 7, T = 1. Depicts the partitions found by 
CLIQUE Optimization algorithm on this spatial dataset. 

The clustering result of new algorithm with T = 1, (P, 
Findings) = (1, 7). 
Basically, CLIQUE Optimization algorithm is a grid-
density clustering algorithm, and CLIQUE is a popular 
and accepted grid-density algorithm of spatial clustering 
because of its excellent ability of every aspect. In this 
experiment, we will compare CLIQUE Optimization 
algorithm with CLIQUE to approve the more excellent 
ability of new spatial clustering algorithm. 

 
Fig 7: Spatial Data set D 

 

 
Fig8: Comparison of CLIQUE and CLIQUE 

Optimization algorithm 
 

4. CRIME CLASSIFICATIONS. 
In this chapter, structured crime classification is the 
relatively easy method of the concept clustering. The 
method tries to identify more similar object in the data 
sets same as general clustering goal. The main idea of 
structured crime classification includes some steps as 
following. The first step is querying and gathering 
Hotspot data relevant to the particular crime, the second 
step is examining each Hotspot of task-related data and 
the third step is counting the Crime type with more 
intangible values repeatedly. The more insubstantial value 
is defined in the generalized hierarchy grid in advance.  
In order to define the similarities between crime types, 
classification on the crime database can be used. 
Classification is the simplification hierarchy on these 
crime types. These attributes above can be depicted by 
classification respectively. 
1. Crime based on Places. 
2. Crime based on Time. 
3. Crime based on Specific Type (Ex., Burglary). 
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4.1. Structured crime classification Algorithm. 
Step1. Start 
Step2. Collect the crime Record and denote DB. 
Step3. Assign DB=|DB| Denote number of crime events. 
 

 
Fig9. All the crime Events in DB Denoted in 

Hotspots 
 

Step4. Assign ci
=Similarity (Obj

1
,Obj

2
…, 

Obj
n

) where Obj
n...1

, are Crime Events of the DB. 

 
The objects below study are Peoples intelligence recorded 
in a given geographical area at a specified time. Temporal 
data includes the date and time components, while the 
location refers to the area in which the criminal activity 
was recorded.  

 
Fig10.Find the similarities c1 to c10 

Step5. To find the probability of particular crime PI
= 

(requested forecast crime, Crime Dataset), record the 
Positive Character, the Negative Character descriptions of 
the Particular Crime. 
Step6. To find the Threshold Value (T), T= (Cluster 
Density Area- Sparse Area), in hotspots. 

 
Fig11. Classification of Density and Sparse Areas 

 
Step7. Identify the Classes of crimes types, classes based 
on the kind of social impact that the criminal activity. Ex- 
Class1= (Burglary in Apartments, Shops, Small Houses), 
Class2= (Robbery, Injury, Property damage), 
Class3=(sex, children abuse, usurp)…, etc. 
 

Table1: Based on the Hotspot crime Classified into 
Different class 

 
Step8. F(C) = classi

 PI
(ci

), The properties are 

subsets of expressive features associated with specific 
values. For each class, a positive and a negative 
description are made. 
 

Step9.If F (Classi
)  positive description 

 Then  
  Produce a Hotspot. 
 Else 
  Produce a Cold spot. 

 
Fig12: Classification of Hotspot and Cold spot 

 
Step10. End. 
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5. EXPERIMENTS AND TEST RESULTS. 
The input data should be entire crime events, and there 
should be recorded systematically in due time. In the 
Anna nagar Promoter Apartment area, located in Chennai, 
area mostly high density of peoples and number of 
apartments are there. An important part of its task is the 
collecting of the information from police records, 
Detective agenesis. Therefore, this area was selected as a 
case study and test field for both the forecasting crime 
event reported and the computerized system for behind 
the conclusion‐making development on communal 
security.  
For the analysis we used Promoter apartment’s burglary 
data from the Anna nagar area of Chennai. Inside this 
analysis this research performed experiments for 
Classification of the crime events. Experiment used data 
from the Chennai city police crime dataset. 
 

Table 2. Reported crime from the record 

 
The crimes were grouped by category in three different 
classes:  
Class1= (Burglary in Apartments, Shops, Isolated 
Houses). 
Class2= (Robbery, Injury, Property damage). 
Class3= (sex, children abuse, usurp). 
The entire crime record this paper used only 190 records. 
For the reason that the remaining records have not 
sufficient information to hand out them between the 
classes selected. 
 

Table 3.Pre‐processed report used as Classification 
algorithms 

 
 

As the algorithm calculate the characteristic features and 
the complementary features of the sample by applying set 
of data with 140 crime events 73% of the 370 records 
from the whole record set. These 140 records were: 
Burglary in Apartments: 91, Home: 12, Isolated Houses: 

37. The structured crime classification for the positive 
description is 82%.  

 
Fig13. Comparison of Existing and structured crime 

classification algorithm 
 

6. SIMULATION RESULTS 
 In this section, we present our simulation tests 
with a different dataset and compare against predictions 
by the Monte Carlo simulation. Additionally, the 
experiment results using the Spatial‐Temporal hot spot 
and cold spot creation. This measure consists of monthly 
and yearly measurements of forecast crime events it is 
based on the recorded police crime data set for the 
particular position. 

C= SM 




LI

I
iO

1
   ---- (1) 

To test the proposed forecasting Simulation results, the 
Chennai city crime dataset was used. This dataset 
contains maximum of 100000 registered crimes and was 
made available by the Chennai city Police Department. 
All crimes were committed within 10 inspection sectors 
(space‐units), over a period of time from January 2005 to 
December 2008 (time‐units). Crimes were organized into 
16 crime Classes as shown in Table 3. 
By evaluating only records from the last four years (2005 
to 2008), a forecast was considered for time unit January 
2008, all registered crime Classes and within all 10 
inspection sectors. The forecast number of crimes was 
then matching up to with the real‐life police records from 
that same space‐time unit (2,201 crimes during January 
2008). 
Two limited forecasts of the number (F) of crimes 
belonging to the (C) crime Classes to be observed within 
the (S) space unit and during (T) time unit are used to 
estimate the movement observed in the reference dataset. 
When the movement is known, it is likely to forecast the 
next value to be observed by appearing at the last 

C1 C2 C3

structured 
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0%

10%

20%

30%

40%

50%

60%

70%

P
re
d
ic
ti
o
n
 p
e
rc
e
n
ta
ge

COMPARISION

M. Vijaya Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2867-2874

2871



observed values. To achieve this forecast, the basic tool to 
be used is a query to the dataset to count the number of 
crimes, from a specific Class (c) and observed within 
specific Region (R) and set of attributes from the Object 
(S (z)) and time units (T), the result of such a function is 
represented by function #(C, R, S(z),T) . Specifically, the 

forecast (F) of crimes, belonging to the (C) crime‐family, 
to be observed within the (R) and set of attributes for the 
crime objects during time (T), is determined by 
 

 
F(C, R, S(z),T) 
 Where 
 C----- Crime Classes 
 R----- Region (or) Area 
 S(z)—Set of Attributes From the Crime Objects 
 Ex: S(burglary, sex, Shop Theft, Road Accidents…., Etc..) 
 T------ Time 
 
Month Based analysis 

F(C, R, S(z),T) = #( 




1

12

m

m

#(C,R,S(z),T
m

) -  (#(C,R,S(z),T
m 1

)))    --(2) 

The function of Month based simulation analysis predicted give up by the analysis of crimes, from the same crime 
classes, observed within the same Region, set of attributes from the crime objects and time.  
 
Year Based Analysis 

F(C, R, S(z),T)= # 
arStraringYe

EndYear
#(C.R.S(z),T

Year
) - #(C,R,S(z),T

Year1
)     --(3) 

The function of Year based simulation analysis predicted give up by the analysis of crimes, from the same crime 
classes, observed within the same Region, set of attributes from the crime objects and time observed the last one year in 
the reference dataset. 
 
Cumulative Percentage Crime Ratio (CPR) 
Both simulation analysis can be expressed cumulative Percentage of crime ratio. 

CPR =( # 
arStraringYe

EndYear
(#(C.R.S(z),T

Year
) - #(C,R,S(z),T

Year1
)) + (#(





1

12

m

m
(#(C,R,S(z),T

m
)  

- #(C, R.S (z),T
m 1

))     -------------------------- (4) 

 
Total Crime Classification 

TCi
 = 



k

i 1
CPRi      -------P=Year  -------------- (5) 

Crime Attribute Ratio 

CAR = 
K
T

i

ci
             ------------- K= Classification  ---------- (6) 

Find the Hotspot and Cold Spot 
 

  If     (CARL
    CARP

) 

   Produce Hot Spot 
  Else 
   Produce Cold Spot 
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